Statistics of soliton-bearing systems with additive noise
نویسندگان
چکیده
منابع مشابه
Statistics of soliton-bearing systems with additive noise.
We present a consistent method to calculate the probability distribution of soliton parameters in systems with additive noise. Even though the noise is weak, we are interested in probabilities of large fluctuations (generally non-Gaussian) which are beyond perturbation theory. Our method is a development of the instanton formalism (method of optimal fluctuation) based on a saddle-point approxim...
متن کاملCapacity Bounds and High-SNR Capacity of the Additive Exponential Noise Channel With Additive Exponential Interference
Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as a new variant of such communication scenarios. First, it is shown that the additive Gaussian ch...
متن کاملPhase Statistics of Soliton
The characteristic function of soliton phase jitter is found analytically when the soliton is perturbed by amplifier noise. In additional to that from amplitude jitter, the nonlinear phase noise due to frequency and timing jitter is also analyzed. Because the nonlinear phase noise is not Gaussian distributed, the overall phase jitter is also non-Gaussian. For a fixed mean nonlinear phase shift,...
متن کاملSymplectic Integration of Hamiltonian Systems with Additive Noise
Hamiltonian systems with additive noise possess the property of preserving symplectic structure. Numerical methods with the same property are constructed for such systems. Special attention is paid to systems with separable Hamiltonians and to second-order differential equations with additive noise. Some numerical tests are presented.
متن کاملMalliavin Calculus for Infinite-dimensional Systems with Additive Noise
We consider an infinite-dimensional dynamical system with polynomial nonlinearity and additive noise given by a finite number of Wiener processes. By studying how randomness is spread by the system we develop a counterpart of Hörmander’s classical theory in this setting. We study the distributions of finite-dimensional projections of the solutions and give conditions that provide existence and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2001
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.63.025601